This work was supported in part by a grant from the Israeli Ministry of Science and Technology.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1092). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Magomedova, N. S. & Zvonkova, Z. V. (1978). Kristallografia, 23, 281–287.
- Magomedova, N. S. & Zvonkova, Z. V. (1980). Kristallografia, 25, 1183.
- Magomedova, N. S., Zvonkova, Z. V., Geita, L. S., Novakovskaya, L. A., Neigaus, M. G. & Belsky, V. K. (1980). *Zh. Strukt. Khim.* 21, 1426–1433.
- Magomedova, N. S., Zvonkova, Z. V., Geita, L. S., Smelyanskaya, L. M. & Ginzburg, S. L. (1980). *Zh. Strukt. Khim.* 21, 1312–1314.
- Magomedova, N. S., Zvonkova, Z. V., Neigaus, M. G. & Novakovskaya, L. A. (1980). Kristallografia, 25, 400–405.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1990). P3 Software. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Valkunas, L., Juodzbalis, D., Urbas, A., Gruodis, A., Silinsh, E. A., Klimkans, A. & Larsson, S. (1993). Adv. Mater. Opt. Electron. 2, 221–232.

Acta Cryst. (1996). C52, 2880-2882

3-(4-Nitrobenzyloximino)hexahydroazepin-2-one

D. TRANQUI,^{*a*} H. ELFROM,^{*b*} H. PERA^{*b*} AND G. LECLERC^{*b*}

^aLaboratoire de Cristallographie associé à l'UJF, CNRS, BP 166, 38042 Grenoble CEDEX, France, and ^bLaboratoire de Chimie Organique, UFR de Pharmacie de Grenoble, UJF, 5 Avenue de Verdun, BP 138, 38243 Meylan CEDEX, France. E-mail: tranqui@labs.polycnrs-gre.fr

(Received 19 February 1996; accepted 10 June 1996)

Abstract

The title compound, $C_{13}H_{15}N_3O_4$, occurs as two stereoisomers. The Z and E isomers both display potent relaxant activity. Crystal structure analysis clearly demonstrates that the studied isomer, the less active form, adopts the Z conformation. The molecules are held together by N—H···O hydrogen bonds and intermolecular ring-to-ring interactions forming head-totail hydrogen-bonded dimers and a layered π -stacking arrangement.

Comment

This work is part of a general program aiming to synthesize new potential relaxant molecules. One derivative of the oximinocaprolactame family, 3-[O-(4-nitrobenzyl) oximino ether]hexahydroazepine-2-one (NOHA), displays promising anti-convulsive activity (Elfrom, 1995) of almost the same order as that of the reference relaxant agents theophilline and cromakalim. Cross-reference tests on NOHA showed that its activity depends strongly on the nature and/or the position of the different functional groups of the molecule. Thus, changing the position of NO₂ on the phenyl group in NOHA or substitution of the caprolactame, a seven-membered heterocycle (C₆NO), by a benzene ring seriously affects its activity.

Thin-layer chromatography and NMR studies showed that two stereoisomers, the Z and E forms, coexist in NOHA. Subsequent pharmacological tests showed that the E isomer is 1.5 times more active than the Z form. For structure-activity-correlation purposes, the geometrical properties of both isomers are of interest. Unfortunately, only single crystals of Z are available as efforts to grow the E isomers have so far been unsuccessful. However, it was decided to perform a crystal structure determination of the Z isomer with the assumption that the molecular structures of both isomers should be similar; the molecular geometry of the Z form could also be helpful in solving the structure of the E isomer by powder methods. The crystal structure solution confirms the Z conformation of the title compound. The molecules are packed in an extensive benzene-benzene π -stacking arrangement (ring-ring distance 3.4 Å) and as head-to-tail hydrogenbonded dimers $[N3 \cdots O4(1-x, -y, 1-z) = 2.977 (6) \text{ Å}].$

Fig. 1. The molecular structure of Z-NOHA showing the atomlabelling scheme with 50% probability displacement ellipsoids.

Acta Crystallographica Section C ISSN 0108-2701 © 1996

Fig. 2. View of the unit cell down the b axis of Z-NOHA; hydrogen bonds are represented by dashed lines.

Experimental

Crystals suitable for X-ray analysis were prepared by condensation of hexahydroazepine-2,3-dione with benzylhydroxylamine (Elfrom, 1995). The compound was recrystallized from methyl acetyl solution.

Crystal data

$C_{13}H_{15}N_{3}O_{4}$	Cu $K\alpha$ radiation
$M_r = 277.28$	$\lambda = 1.54180 \text{ Å}$
Monoclinic	Cell parameters from 23
C2/c	reflections
a = 21.141(5) Å	$\theta = 10-24^{\circ}$
b = 9.610(3) Å	$\mu = 0.860 \text{ mm}^{-1}$
c = 13.980(4) Å	T = 293 (2) K
$\beta = 107.33 (8)^{\circ}$	Needle
$V = 2711.3(13) \text{ Å}^3$	$0.18 \times 0.08 \times 0.06$ mm
Z = 8	Colourless
$D_x = 1.359 \text{ Mg m}^{-3}$	
D_m not measured	
Data collection	
CAD 4 diffractometer	A 64.00%
CAD-4 unitacionieler	$\sigma_{\rm max} = 04.99^{\circ}$

 ω scans Absorption correction: none 4443 measured reflections 962 independent reflections 603 observed reflections $[I > 2\sigma(I)]$ $R_{\rm int} = 0.04$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0406$ $wR(F^2) = 0.1077$ S = 0.438962 reflections 182 parameters H atoms riding $w = 1/[\sigma^2(F_o^2) + (0.1706P)^2]$ + 1.9204P] where $P = (F_o^2 + 2F_c^2)/3$ $h = -24 \rightarrow 22$

 $k = 0 \rightarrow 11$ $l = 0 \rightarrow 16$ 3 standard reflections monitored every 40 reflections frequency: 60 min intensity decay: 12%

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.130 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.152 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	y	z	U_{eq}
01	-0.1296 (2)	-0.0324 (4)	0.3175 (3)	0.0834(12)
02	-0.1035 (2)	0.1815 (5)	0.3265 (4)	0.0940(13)
03	0.2229(2)	0.0128 (4)	0.4318(3)	0.0721 (10)
O4	0.4306(2)	0.0298 (4)	0.5503(3)	0.0695 (10)
N1	-0.0881 (2)	0.0613 (6)	0.3355 (3)	0.0661 (12)
N2	0.2906(2)	-0.0249(4)	0.4644 (3)	0.0617(12)
N3	0.4237 (2)	0.0182 (4)	0.3871 (3)	0.0675 (12)
CI	-0.0175 (2)	0.0228 (5)	0.3681 (3)	0.0503(11)
C2	0.0002(2)	-0.1129(5)	0.3859 (4)	0.0572 (13)
C3	0.0657 (2)	-0.1476 (5)	0.4167 (3)	0.0559 (12)
C4	0.1145(2)	-0.0450(5)	0.4316(3)	0.0496 (12)
C5	0.0952 (3)	0.0907 (5)	0.4121 (4)	0.0613(14)
C6	0.0291 (3)	0.1265 (5)	0.3810(3)	0.0573 (13)
C7	0.1859(2)	-0.0846 (6)	0.4697 (4)	0.0651 (15)
C8	0.3252(2)	0.0633 (5)	0.4322 (3)	0.0573 (13)
C9	0.3983(2)	0.0329 (5)	0.4619(4)	0.0546(13)
C10	0.3863 (3)	-0.0005(7)	0.2816(4)	0.085 (2)
C11	0.3494 (3)	0.1221 (7)	0.2298 (4)	0.076(2)
C12	0.2868 (2)	0.1581 (6)	0.2573 (4)	0.0706 (15)
C13	0.3004 (3)	0.1883 (5)	0.3688 (4)	0.0682 (14)

Table 2. Selected geometric parameters (Å, °)

01—N1	1.230 (5)	C2C3	1.364 (6)
02—N1	1.197 (5)	C3C4	1.398 (6)
O3—N2	1.414(4)	C4C5	1.370 (6)
O3—C7	1.419(5)	C4C7	1,492 (6)
O4C9	1.222 (5)	C5C6	1,377 (7)
N1C1	1.473 (6)	C8—C9	1.503 (7)
N2—C8	1.286(6)	C8—C13	1.492 (6)
N3—C9	1.318(6)	C10-C11	1.478 (8)
N3C10	1.463(7)	C11-C12	1.523 (7)
C1-C2	1.359(7)	C12—C13	1.527 (7)
C1C6	1.375 (7)		
N2—O3—C7	109.2 (3)	01 - N1 - C1	118 3 (5)
02—N1—01	122.0(5)	C8 - N2 - O3	110.2(4)
02—N1—C1	119.7 (5)	C9-N3-C10	125.9 (4)

Refinement was based on the set of 962 reflections with I > $1.5\sigma(I)$ in view of the weak reflectivity and instability of the available crystal. H atoms were refined riding on their carrier atoms with one common isotropic displacement parameter.

Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: SDP (Frenz, 1980). Programs used to solve the structure: SHELXS86 (Sheldrick, 1990) and SHELXL93 (Sheldrick, 1993). Molecular graphics: Xtal-GX (Hall & du Boulay, 1995) and PLUTON (Spek, 1992).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SK1016). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

References

Elfrom, H. (1995). Thesis, University of Grenoble.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Frenz, B. A. (1980). Enraf-Nonius Structure Determination Package. Version 17. College Station, Texas, USA.

Hall, S. R. & du Boulay, D. (1995). Xtal-GX User's Manual. University of Western Australia, Australia.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Spek, A. L. (1992). *PLUTON*92. *Molecular Graphics Program*. University of Utrecht, The Netherlands.

Acta Cryst. (1996). C52, 2882-2883

1,1'-Diacetyl-2,2'-biimidazole

Paula M. Secondo,^{*a*} Colin A. Hester,^{*a*} Harvest L. Collier,^{*a*} Russell G. Baughman^{*b*} and A. Wallace Cordes^{*c*}

^aDepartment of Chemistry, University of Missouri-Rolla, Rolla, MO 65401, USA, ^bDivision of Science, Truman State University, Kirksville, MO 63501-0828, USA, and ^cDepartment of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA. E-mail: baughmans@truman.edu

(Received 29 May 1996; accepted 17 June 1996)

Abstract

A crystallographic twofold rotation axis passes through the C—C bond joining the imidazole rings of the title compound, $C_{10}H_{10}N_4O_2$. The molecule crystallizes in a *cis* disposition. The planar acetyl group is twisted by $5.0 (3)^\circ$ with respect to the imidazole ring and the two imidazole rings are tilted by $60.53 (5)^\circ$ in relation to one another.

Comment

First studied for its antiprotozoal activity (Melloni *et al.*, 1975) and later incorporated into hexaaza macrocyclic metal complexes (Kandil & Collier, 1988), 1,1'diacetyl-2,2'-biimidazole, (I), exhibits a *cis* conformation in the solid state, unlike all previously reported 1,1'-disubstituted 2,2'-biimidazole derivatives (Secondo, Barnett, Collier & Baughman, 1996; Sokal, Baikalova, Domnina & Poria-Koshits, 1992) which are *trans* oriented.

The bond lengths and angles of the 2,2'-biimidazole skeleton do not deviate significantly from those in the free molecule (Cromer, Ryan & Storm, 1987). The unfavorable *cis* conformation [dihedral angle $60.53(5)^{\circ}$] is stabilized by intermolecular interactions between

(a) the methyl group and an imidazole N atom[C5— H···N1(x, -y, $-\frac{1}{2} + z$), H···N = 2.521 (2) Å] and (b) an imidazole C—H and an O atom [C3—H···O($-\frac{1}{2} + x$, $\frac{1}{2} - y$, $-\frac{1}{2} + z$), H···O = 2.415 (2) Å]. The non-H atoms of each half molecule are nearly coplanar, with O1 showing the maximum deviation from the eightatom least-squares plane [0.056 (1) Å].

Fig. 1. View of the title molecule with displacement ellipsoids plotted at the 50% probability level.

Experimental

The preparation of the title compound has been reported previously (Melloni *et al.*, 1975). Crystals suitable for diffraction were grown by slow cooling of a hot, saturated acetic anhydride solution. Though the title material is susceptible to hydrolysis both as a solid and in acetic anhydride, none was noted during data collection as evidenced by the low variation of the check-reflection intensities.

Crystal data

	$C_{10}H_{10}N_4O_2$	Mo $K\alpha$ radiation
	$M_{t} = 109.11$	$\lambda = 0.71073 \text{ Å}$
	Monoclinic	Cell parameters from 50
•	C2/c	reflections
	a = 11.987 (2) Å	$\theta = 5.5 - 18.7^{\circ}$
l	b = 9.7183(15) Å	$\mu = 0.103 \text{ mm}^{-1}$
,	c = 10.2177 (12) Å	T = 293 (2) K
	$\beta = 119.889(9)^{\circ}$	Block cut from larger crystal
	V = 1032.0(2)Å ³	$0.50 \times 0.38 \times 0.31$ mm
	Z = 4	Colorless
	$D_{\rm r} = 1.404 {\rm Mg} {\rm m}^{-3}$	
	D_m not measured	
		
	Data collection	
	Siemens P3 diffractometer	$\theta_{\rm max} = 25.07^{\circ}$
	$\theta/2\theta$ scans	$h=0 \rightarrow 14$
	Absorption correction:	$k = -3 \rightarrow 11$
	none	$l = -12 \rightarrow 10$
	1090 measured reflections	3 standard reflections
	914 independent reflections	monitored every 50
	778 observed reflections	reflections
	$[I > 2\sigma(I)]$	intensity decay: 1.1%
	$R_{\rm int} = 0.0077$	

Acta Crystallographica Section C ISSN 0108-2701 © 1996